The Operator Shell: A Means of Privilege Distribution
Under Unix

Michael Neuman Gary Christoph
<mcn@lanl.gov> <ggc@lanl.gov>
Computer Operations and Assurance
Computer Security Section
Los Alamos National Laboratory

ABSTRACT

The Operator Shell (Osh) is a setuid root, security enhanced, restricted shell
for providing fine-grain distribution of system privileges for a wide range of
usages and requirements. Osh offers a marked improvement over other Unix
privilege distribution systems in its ability to specify access to both com-
mands and files, auditing features, and familiar interface. This paper
describes the design, features, security considerations, internals, and applica-
tions of the Operator Shell.

[. Introduction

In large computing environments, support personnel have more specific responsibilities than provided for by
the Unix “all-or-nothing” type of privilege system. A simple solution is to give everyone who requires sys-
tem privileges the root password. For some large systems at Los Alamos, over fifty people would require
system privileges: Operators are responsible for shutting down the machines, syncing filesystems in emer-
gencies, and watching status monitors; Consultants, in the course of answering user questions, typically
need to view a user’s directory and files without forcing him to change access permissions; Security Admin-
istrators are responsible for auditing, monitoring, and maintaining the password database; finally, a few Sys-
tem administrators need complete access to the system. With potentially up to fifty people holding the root
password, there are glaring problems of accountability (who did what when), administration (root password
distribution--how to notify fifty people quickly and easily, and worse, having to change the password when-
ever someone no longer requires privileges), and user restriction (e.g., ensuring consultants aren’t building
new kernels).

The Operator Shell (Osh) offers a solution to each of these problems. Osh is a setuid root, security enhanced,
restricted shell. It allows the administrator to carefully limit the access of special commands and files to the
users whose duties require their use, while at the same time automatically maintaining audit records. The
configuration file for Osh contains an administrator defined access profile for each authorized user or group.
This profile lists the commands which may be run and specific access rights for files and directories. In addi-
tion to this fine grain distribution of privilege, all typed commands are logged along with a notation of their
success or failure, offering a comprehensive audit log.

To the user, the Operator Shell looks like a standard C shell. It supports pipes, wildcards, aliasing, redirec-
tion, and environment referencing, except there is no longer any concept of a path. The user is restricted to
only the specific commands, and specific path to those commands, that the administrator chooses. To
improve functionality, some otherwise dangerous commandsergandvi) have been rewritten to sup-

port the Osh model of security. Osh does not interfere with file accesses a user would normally be able to

perform. Additionally, it allows the user access to files specified in the user’s profile in the Osh configura-
tion. For example, Osh can be configured to allow a user write access to a directory but to none of the files in
it. Optionally, a file is also readable if the file owner places a key in his home directory, granting permission
to a consultant, for example, to read his files. This gives a user specifically grantable control over his pri-
vacy.

Il. Design of the Operator Shell
The Problem

The Operator Shell is designed to address the problem of special needs users. These users need certain sys-
tem-level privileges, while being carefully limited to only the tasks they are required to perform. The needs

of three types of users were considered in the design of the Operator Shell: consultants, operators, and secu-
rity administrators.

The consulting group at LANL consists of seven cleared and uncleared lab employees. Hundreds of custom-
ers call in daily with questions about utilities, errors in their source code, and problems with logging in. As a
result, consultants frequently need to look at the caller’s files to determine the problem and offer solutions.
Since they have no need for general system administration privileges, it was decided not to give them the
root passwords, and force them to find a system administrator who could look through the files with them.
This cost the consultants hours in tracking down a sysadmin who was willing to spend time watching a con-
sultant use his terminal and phone. The time used on these types of problems was in the hours or days. They
needed a way to look at any user’s files, given that user’s permission, without being able to read or write to
anything they shouldn’t. In addition, consultants are typically “power users” with little time, consequently

the interface must be simple to learn and not force any unreasonable restrictions--they should be able to do
everything under Osh that they could as a regular user.

The second type of special users are the operators. There are approximately twenty-five operators at LANL
who are responsible for 24 hour computer support. They watch status monitors, reboot systems, sync disks,
reset queues, etc. The operators perform all of their tasks using a procedure manual containing step by step
instructions for each of the situations they'’re required to handle. Therefore, the interface to the Osh cannot
change from the standard shell the manuals were written for, and the allowed command set and file permis-
sions are well defined. The name and activities of the operators needed to be logged as well to provide an
audit trail for system administrators to refer to if any problems occurred. With this log they can determine
exactly what happened, when, and who responded. It was important to meet the needs of the operators since
they comprised the majority of root password holders.

Finally, the needs of security administrators were considered in the design of Osh. Primarily, they need to
edit password files and review security logs, with occasional review of user files (without the user’s explicit
permission) and in some cases, unrestricted access to the whole system. In addition to those user-level fea-
tures, security administrators needed complete audit logs from Osh to detect abuse as well as the ability to
carefully configure user and group access.

The driving force behind the Operator Shell is the difficulty of proper root password administration. Giving
too many users the root password creates huge security risks, yet not giving away the root password to those
users that need the privileges hurts productivity. Assuming a proper balance between security and productiv-
ity has been reached, other administration problems surface when one of the users holding the root password
no longer requires it. Instead of changing and redistributing the password to all those who require it, an obvi-
ously difficult practice, the user retains root privileges until the next periodic root password change. The
Operator Shell was designed to solve the problems of root password administration by addressing the spe-
cial needs users who require limited system privileges.

Design Goals of Osh

Design goals for the Operator Shell were developed from the profiles of the special needs users as well as
from a few general policy decisions. Osh is fundamentally designed to allow a drastic reduction in the num-
ber of holders of the root password without reducing productivity. Following are the goals which shaped the
Operator Shell.

» Configuration should be easy

« Configuration should be flexible and specific enough to control all aspects of user access

» Security should be superior to standard root shells by offering thorough audit logs
containing transaction time, command, and outcome

« Considering the nature of Osh, it should be extremely resistant to abuse and attack

* Resistance to abuse should not come at the cost of functionality

 Keep the code simple enough to be easily understood by administrators and system
programers

* Interface should be well known to the user

 Support as many features of that interface as possible so Osh is virtually transparent

* Provide the user the same access he would have outside of the shell

lll. Implementation
User Features

The interface to the Operator Shell looks like the standard Cshell with only a small number of interactive
features unimplemented. Included are pipes, file redirection, aliasing, environment referencing, and wild-
cards. History, substitution, and job control may be added later. Integrated into the shell is a built-in help
command which lists the defines the program was compiled with as well as available commands. Following
is a sample session with the Operator Shell.

rho% uname -a
sn1054 r 6.1 rdm.56 CRAY Y-MP
rho% Is -I /usr/local/etc/osh
-rwsr-xr-x 1 root 519576 Dec 14 08:50 /ustr/local/etc/osh*
rho% /usr/local/etc/osh
neuman michael (mcn)
Operator Shell version 1.2
rho,/u0/mcn #> help
Operator Shell (osh) Version 1.2
by Michael Neuman <mcn@lanl.gov> 12/93

Defines:

NO COMPILE_TABLE
LOGGING
CHECK_ACCESS
OPER_OVERRIDE

Commands accessible:
help cd more alias wc Is printenv telnet
rlogin rm cp w cat

rho,/ud/mcn #> Is $HOME

osh tcsh uudecode uue uuencode yes yes.c
rho,/u0/mcn #> alias

Current list of aliases:

rho,/u0/mcn #> alias Is Is -CF

Alias[0]: Is -> Is -CF

rho,/ud/mcn #> Is $HOME

osh/ tcsh* uudecode* uue/ uuencode* yes* yes.c
rho,/u0/mcn #> rm /etc/rc

rm: Permission denied

rho,/u0/mcn #> "D

Administrator Features

To the administrator, the Operator Shell is easy to configure and extremely flexible. It is based on a com-
mand matrix which can either be compiled into the shell or held in a file. If the commands are compiled in
they are global for every executor of Osh and file access control lists aren’t allowed. This is primarily useful
if your configuration requires several copies of the Operator Shell protected by mandatory access control.
The command matrix contains a list of all valid users and groups and the commands they are allowed to exe-
cute. The submatricies are additive, so for example, the special global submatrix “ALL” could specify basic
commands likés, cd, andhelp which everyone should be able to run, “consultants” could specify com-
mands which should be accessible by everyone inateailtants group, and “mcn” could specify com-

mands which should only be accessible by ox®r If men was a member of thewnsultants group, he

would have the privileges of all three of those submatricies. If “ALL" is not specified, a user can only run
Osh if his username or groupname is specified in the command matrix. Following is an example command
matrix.

ALL

{

help NULL

cd NULL

more NULL

alias NULL

wc /usr/ucb/wc

Is /bin/ls

printenv /usr/ucb/printenv
telnet /usr/ucb/telnet

}

consultants

{

finger /usr/ucb/finger

}

mcn
{

rm /usr/bin/rm
cp /usr/bin/cp
w /usr/ucb/w
cat /usr/bin/cat

}

In each submatrix (delineated by the curly brackets), the first column specified the command name which
the Osh user would type, and the second column specified the path to that command. If it's a built-in com-

mand, it's path is specified as NULL to indicate that no external program will be run. The built-in commands
aremore, cd, help, andalias. Command handlers can also be implemented by the administrator to allow for
specific access rights checking before calling the program specified in the command table. Currently, the
Operator Shell has handlers implementedprm, andvi to check writeability of command line specified
files, anddcache (a Unicos command to administer logical device caches) to ensure that no command line
options are passed to it. Handlers can be easily added by the administrator.

The Operator Shell's more basic functions can be configured by editing the file “config.h”. This file includes
the defines which specify where the command matrix is, where the lodfile should go, and other basic config-

uration options as shown below.

Table 1: Configuration Options

Option Type Action

COMPILE_TABLE | boolean| Build the command table into Osh

TABLE_NAME path Path to the command table if not compiled in
LOGGING boolean| Turn logging on

LOGFILE path Path to the lodfile if logging is turned on
CHECK_ACCESS boolean Check for key in file owner’s directory
ACCESS_FILE string Filename for the key

OPER_OVERRIDE | boolean Allow users in OPER_GROUP to override
CHECK_ACCESS

OPER_GROUP string Name of group allowed OPER_OVERRIDE status

Security Features

The purpose of the Operator Shell is to improve security of a system and several features have been added to
that end. The most important security consideration is that the Operator Shell is a setuid root shell, and con-
sequently so are all of it’s children. This means that once a program is executed by Osh, the system’s secu-
rity rests solely in that program until it returns. Several significantly important utilities rely completely on

the mandatory access controls of Unix. For this reasorg andvi have been rewritten to remove their reli-

ance upon Unix protections. The standard Berkeiane allows the user to execute shell escapes and pipes

as well as enter int@. It has been replaced with an internal versiomarfe using the curses libraryi

allows the user shell escapes and pipes as well as the ability to read and write to\arhalleeen

replaced with the publicly availab#vis modified to disallow filename changes so that the user may only

read and write to the file specified on the command line. Internal to Osh, a handler has been added to per-
form file permission checks on the command line filename.

File read permission is granted only if access to that file is not specifically denied and if one of the following
is true:

* The user could normally perform the read

* CHECK_ACCESS is on and the file owner has the key in his home directory

* OPER_OVERRIDE is on and the user is in the OPER_GROUP

» Read permission to the file is specified in the user’s access control list

» Read permission to the directory the file is in is specified and read access to that specific

file is not denied.
File write permission is granted if the write is not specifically denied, if the user could normally perform the
write, or if write permission to the directory the destination file is in is specified and write access to that spe-
cific file is not denied. These access control lists are specified as part of the command submatrix. For exam-
ple, the following submatrix would allow the useaen read and write access to the entire /etc directory
except write access to the message of the day and read access to the shadow password file.

mcn
{

rm /usr/bin/rm
cp /usr/bin/cp
w /usr/ucb/w
cat /usr/bin/cat
+w/etc
-w/etc/motd
-r/etc/shadow

}

In addition to these access control mechanisms, thorough audit logs are kept. All typed commands are saved
in the logfile with real user ID, date and time, command typed, and an indication of success (+) or failure (-
). Following is a sample from the log where mcn is a user allowed to modify the kernel, but not anything
else.

LOGIN: mecn ran osh at Tue Feb 15 18:54:46 1994
mcn (2/15/94 18:54:47): help +

mcn (2/15/94 18:54:51): Is /etc +

mcn (2/15/94 18:54:56): rm /etc/fstab -
mcn (2/15/94 18:55:03): Is / +

mcn (2/15/94 18:55:07): rm /vmunix.old
mcn (2/15/94 18:55:11): Is -l / +

mcn (2/15/94 18:55:27): mv /vmunix /vmunix.old
mcn (2/15/94 18:55:47): Is -| /vmunix.old +

+

+

+

mcn (2/15/94 18:55:55):
mcn (2/15/94 18:55:56):
mcn (2/15/94 18:56:04):
mcn (2/15/94 18:56:06):
mcn (2/15/94 18:56:07):
mcn (2/15/94 18:56:23):

cd /var/log
Is +
rm syslog.7 -
cd /varfadm +
Is +
rmlastlog -

logout: mcn left osh at Tue Feb 15 18:56:33 1994

In addition to access control lists and logging, security is enhanced in other, more subtle ways. By setting
both the file and the explicit path to that file, it is assured that the commands are run from their proper loca-
tion. This avoids many of the more common setuid program exploitations such as IFS and PATH environ-
ment variable modification. A useful side effect of the Osh program being setuid root is the command matrix
file can be set with read permission to no one. Consequently, malicious users aren't given any hints as to
whom has the most power and is therefore worth the most time to hack.

Internals

There are two primary components to the Operator Shell’'s internal security. The first is the means of execut-
ing external programs and the second is the file access protection mechanisms. The method of executing
external programs has been carefully constructed to avoid many of the security holes involved with setuid
programs executing other programs. The file access protection mechanisms are designed to allow the admin-
istrator to configure the exact permissions for file accesses and allow the consultant access to users’ files, all
without restricting the user beyond his normal capabilities.

When a the user types a command, it’s entry is looked up in the command table. If the entry exists and has an
associated path, it's corresponding handler is called (if there is one) which checks for command line file
writeability, then the function execute() is called which determines if the program is a shell script or an exe-
cutable, then calls execv(3) with the explicit path and options. The reason for determining if the file is a shell
script or not is a large number of shell scripts do not have a “#!” header and execv(3) cannot handle these
files directly, so the execute() function inserts the Bourne shell as the program to be executed. If the entry is
internal, the command’s handler is called directly.

If the command can write to files, or if the command line contains a redirect to a file, writeability is allowed
if any of the following rules are true:

* The file is specified as +w in the user’s access control list

» The parent is specified as +w, and the file is NOT specified as -w

* The file would normally be writable by the user and the file is NOT specified as -w

The commands which need to check writeability must provide handlers to perform the access checking
internally. This is obviously necessary for commandsdike/hich require the first argument to be checked
for readability and the second for writeability.

For every command, the default security checking routine will test each argument on the command line for
file readability. If the argument doesn’t exist as a file, then it is assumed the argument is an option and is
ignored. For this reason, handlers must be created if argument writeability must be checked.

The only functions a handler needs to perform is a test of the validity of the command line options, a nota-
tion of the command’s success or failure, and then a call to execute(). Handlers can be used to check write-
ability of an argument, force an option to a program, ensure arguments weren't sent to a function, etc. For
writing handlers, the following routines are important.

Table 2: Support Functions

Function Arguments Return codes

acl() char *filename, | +1 if filename is listed as a + for the given mode,

char mode -1 if filename is listed as a - for the given mode,
and 0 if the filename is not listed in the acl

check _access()| intargc, +1 if all arguments are readable (or don'’t exist),
char **argv 0 if one argument is not readable

writeable() char *filename | +1 if flename is writable, O if not writable

execute() int argc, Executes the command line, should not return

char **argv except on error with execv(3)

The check_access() routines iterates through all command line arguments before calling any handlers. It
does this according to the following pseudo-code:

FOR i=0 TO number of arguments
IF argument(i) +r in acl THEN
NEXT i { File is readable }
ELSE
IF argument(i) -r in acl THEN
invalidate command line
return from routine
ENDIF
ENDIF
{if we get this far, that means the argument isn't in the acl}
IF argument(i) exists as a file THEN
IF real uid is allowed to read argument(i) THEN
NEXT i { File is readable }
ELSE
IF (not CHECK_ACCESS) or ("ACCESS_FILE" exists in argument(i)
owner's home directory) THEN
NEXT i {File is readable }
ELSE
IF (not OPER_OVERRIDE) or (user not a member of OPER_GROUP)
invalidate command line
return from routine
ENDIF
ENDIF
ENDIF
ENDIF
NEXT i

Handlers are added by the following procedure:

1) Add the handler function prototype to the prototype section in struct.h

2) Add the command name and handler function name to the Internal[] array in struct.h

3) Modify the NUMINT define right below the Internal[] array to reflect the number of
internal handlers

4) Add the handler code to handlers.c

5) Recompile

V. Summary

Osh is best applied to any situation where specific privileges need to be given to specific users. It allows the
administrator to specify access to both commands and files for individual users and groups, automatically
maintains audit logs, and is easily configurable and modifiable for any situation. These features make the
Operator Shell superior to root password distribution or any other privilege distribution system. At LANL,
the Operator Shell has cut the number of users who require the root password on our supercomputers from
more than 50 to less than 10. The security and administration benefit of this is remarkable.

Comparison with Other Systems

Similar systems to the Operator Shell are Sudo (by Jeff Nieusma) and Runas (by Christopher Carpinello).

The interface to both Sudo and Runas is via the command line. For example, a user would type “sudo vipw”
which, if the access control file allows it, will run vipw as root. This is a quicker interface than Osh for short
administration tasks, but it doesn’t allow the administrator to protect commands from dangerous options or
specify access controls to files.

Table 3: Comparison of Osh, Sudo, and Runas

Feature Osh Sudo Runas
Interface Complete shell Command line Command line
Access Control Programs and Files Programs ONLY Programs ONLY
Commands run as root ONLY root ONLY Any user
Command protection Protection againgt NONE NONE

any options with
handlers
Logging Command and it's | Attempts to run | Attempts to run
success or failure | Sudo Runas
Availability

The Operator Shell is available in two ways:

Email: send mail to Mike Neuman <mcn@Ianl.gov>
FTP: Anonymous FTP at ftp.c3.lanl.gov[128.165.21.64]:/pub/mcn/osh.tar.Z

Osh is known to run under Unicos 6.1 and 7.x, SunOS 4.1.3, and Ultrix 4.2.

