
Reverse Engineering and the ANI
Vulnerability

Alexander Sotirov
alex@sotirov.net

Introduction

• Security researcher at Determina

• Vulnerability analysis and reverse
engineering Microsoft patches

• Exploit development experience

• Speaker at CanSecWest, REcon, SyScan
and BlackHat

• Vista vulnerabilities

Exploit Demo

Part I

Reverse Engineering
Microsoft Patches

Patch Statistics

• More than 500 bulletins since 1998

• Most updates fix multiple vulnerabilities

○ 5 vulnerabilites in the latest IE patch

• Fixed release schedule

○ second Tuesday of the month

Skeletons in Microsoft's Closet

• Security issues are often fixed silently
○ security researcher reports a vulnerability
○ Microsoft audits the affected code and

discovers 5 related bugs
○ 6 bugs are fixed in the patch
○ security bulletin describes only the first bug

• Service packs silently fix bugs

Withholding information

• Security bulletins omit technical details:

There is a privilege elevation vulnerability in
Windows 2000 caused by improper validation of
system inputs. This vulnerability could allow a
logged on user to take complete control of the
system.

• Reverse engineering is the only way to
really understand vulnerabilities

Patch Analysis

• The security industry relies on reverse
engineering patches for:

○ attack vectors and packet signatures

○ vulnerability analysis

○ remote detection of the vulnerability

○ exploit development

Reverse Engineering Tools

• IDA Pro
○ great plugin API

• BinDiff
○ function level diffing of binaries

• PaiMei
○ allows tracing and visualization of execution

paths, guides static analysis

• VMware
○ backwards debugging with multiple

snapshots

Patch Analysis Demo

Part II

Exploitation

Protection Mechanisms in Vista

• /GS stack cookies

• Address Space Layout Randomization

• Data Execution Prevention

/GS stack cookies

static_cookie = rand();

void foo(char* input)

{

int cookie = random_cookie;

char buf[256];

strcpy(buf, input);

if (cookie != random_cookie)

abort();

}

buf cookie retaddr

Bypassing /GS

• No need to bypass /GS for ANI exploit

• There is no stack cookie in our function:

○ /GS protects only functions with arrays

○ ANI header data is read into a structure

ASLR

• Address Space Layout Randomization
○ stack and heap addresses
○ base addresses of executables and libraries

• Blocks the use of jmp esp trampolines
○ we need a fixed location

Bypassing ASLR

• Find something that's not randomized
○ executables
○ ntdll.dll and kernel32.dll

• Write our shellcode at a known location
○ vulnerability specific

• Heap spraying
○ great for browser exploits

Heap spraying

Used by most browser exploits since 2004

var x = new Array();

// Fill 200MB of memory with copies of the

// NOP slide and shellcode

for (var i = 0; i < 200; i++) {

 x[i] = nop + shellcode;

}

Normal heap layout

used memory:
free memory:

0 MB

100 MB

200 MB

300 MB

After heap spraying

used memory:
free memory:

shellcode:

shellcode

0 MB

100 MB

200 MB

300 MB

Any address around 200MB is
likely to contain shellcode.

Data Execution Prevention

• CPU support for non-executable data
○ x86 architecture did not support it
○ introduced by AMD and Intel in 2004

• Prevents code injection

• Opt-in on Windows
○ IE not protected by default even on Vista

Bypassing DEP

• Return-into-libc attacks

system("/bin/sh")

• Disabling DEP

○ jump to code in ntdll.dll that disables DEP

• VirtualProtect

○ change the protection of the heap to allow
execution

Bypassing DEP

• ASLR is supposed to stop DEP bypasses

• LoadAniIcon function has an exception
handler that catches access violations

• Send multiple ANI files
○ guess the address of ntdll.dll (only 256

locations)
○ disable DEP and execute shellcode

Part III

Secure Development

Security from the ground up

• Use the right language and platform

○ Java and Python eliminate buffer overflows

○ PHP encourages insecure programming

○ C++ is a bad choice in almost any case

Designing secure software

• Isolate components along trust
boundaries
○ authenticated / non-authenticated
○ root / non-privileged user
○ user data / trusted data

• Narrow, well defined interfaces

• Validate all data that crosses a trust
boundary

Know when to give up

• Some things are just really bad ideas
○ ActiveX
○ Google Desktop Search web integration
○ PHP register_globals setting

• Adding security on top of an existing
insecure system

○ Windows and Oracle legacy codebases
○ WordPress vs. MediaWiki

Exploit mitigation

• All software has bugs

• Assume that all software you write will
ship with critical security vulnerabilities

• Make exploitation harder

○ /GS cookies and ASLR are great examples

○ SSH privilege separation

○ Avoid single sign-on for web services

Microsoft vs. RedHat vs. Apple

Vista XP
SP2 2000 RHEL Open

BSD OSX

ASLR

Executable Randomization

Library Randomization

Stack Randomization

Heap Randomization

Stack Protection

Stack Cookies

Variable Reordering

Non-executable

Heap Protection

Heap Metadata Protection

Non-executable

Questions?

alex@sotirov.net

