E

[AR B R NNENENENENENERERRENRNENNNNNRNERNSENRNENNENNNRNBNERHSESNRBENNEHNSHEBRBSERHSEHSEBNEHNENENENREENRSERERNENRNENRERENNENENENENNENNNNNENNRNENNENRNRNERNRNBRENENNNEHNNESR"™H}NNNEHNEH®ESHEHNH,]

Reverse Engineering and the ANI
Vulnerability

Alexander Sotirov
alex@sotirov.net

Introduction

e Security researcher at Determina

 Vulnerability analysis and reverse
engineering Microsoft patches

e Exploit development experience

e Speaker at CanSecWest, REcon, SyScan
and BlackHat

e Vista vulnerabilities

il determina-

Exploit Demo

Part I

Reverse Engineering
Microsoft Patches

Patch Statistics

e More than 500 bulletins since 1998

e Most updates fix multiple vulnerabilities

o 5 vulnerabilites in the latest IE patch

e Fixed release schedule

o second Tuesday of the month

Skeletons in Microsoft's Closet 5

e Security issues are often fixed silently

o security researcher reports a vulnerability

o Microsoft audits the affected code and
discovers 5 related bugs

o 6 bugs are fixed in the patch
o security bulletin describes only the first bug

e Service packs silently fix bugs

Withholding information

e Security bulletins omit technical details:

There is a privilege elevation vulnerability in
Windows 2000 caused by improper validation of
system inputs. This vulnerability could allow a
logged on user to take complete control of the
system.

e Reverse engineering is the only way to
really understand vulnerabilities

Patch AnaIyS|s

e The security industry relies on reverse
engineering patches for:

o attack vectors and packet signatures
o vulnerability analysis
o remote detection of the vulnerability

o exploit development

Reverse Engineering Tools

e IDA Pro

o great plugin API
e BinDiff

o function level diffing of binaries
e PaiMei

o allows tracing and visualization of execution
paths, guides static analysis

e VVMware

o backwards debugging with multiple
snapshots

il determina-

Patch Analysis Demo

Part 11

Exploitation

Protection Mechanisms in Vista

[AR B R NNENENENENENERERRENRNENNNNNRNERNSENRNENNENNNRNBNERHSESNRBENNEHNSHEBRBSERHSEHSEBNEHNENENENREENRSERERNENRNENRERENNENENENENNENNNNNENNRNENNENRNRNERNRNBRENENNNEHNNESR"™H}NNNEHNEH®ESHEHNH,]

e /GS stack cookies
e Address Space Layout Randomization

e Data Execution Prevention

/GS stack cookies : [FEES

static cookie = rand();

volid foo(char* input)

{
int cookle = random cookie;
char buf[256];
strcpy (buf, 1nput);
i1f (cookie != random cookie)
abort () ;
J

_ cookie retaddr

>

e No need to bypass /GS for ANI exploit

e There is no stack cookie in our function:

o /GS protects only functions with arrays

o ANI header data is read into a structure

e Address Space Layout Randomization

o stack and heap addresses
o base addresses of executables and libraries

e Blocks the use of jmp esp trampolines

o we need a fixed location

Bypassing ASLR

e Find something that's not randomized

o executables
o ntdll.dll and kernel32.dll

e \Write our shellcode at a known location
o vulnerability specific
e Heap spraying

o great for browser exploits

Used by most browser exploits since 2004

var x = new Arrav();

// Fill 200MB of memory with copies of the
// NOP slide and shellcode

for (var 1 = 0; 1 < 200; 1++) {

x[1] = nop + shellcode;

Normal heap layout

|}
[AR B R NNENENENENENERERRENRNENNNNNRNERNSENRNENNENNNRNBNERHSESNRBENNEHNSHEBRBSERHSEHSEBNEHNENENENREENRSERERNENRNENRERENNENENENENNENNNNNENNRNENNENRNRNERNRNBRENENNNEHNNESR"™H}NNNEHNEH®ESHEHNH,]

300 MB
used memory:
free memory:
200 MB
100 MB
0 MB

300 MB
used memory:
free memory:
shellcode:
200 MB
shellcode
100 MB Any address a_round 200MB is
likely to contain shellcode.
0 MB

Data Execution Prevention

e CPU support for non-executable data

o X86 architecture did not support it
o introduced by AMD and Intel in 2004

e Prevents code injection

e Opt-in on Windows

o IE not protected by default even on Vista

Bypassing DEP .

e Return-into-libc attacks
system("/bin/sh")
e Disabling DEP
o jump to code in ntdll.dll that disables DEP

e VirtualProtect

o change the protection of the heap to allow
execution

Bypassing DEP .

e ASLR is supposed to stop DEP bypasses

e LoadAnilcon function has an exception
handler that catches access violations

e Send multiple ANI files

o guess the address of ntdll.dll (only 256
locations)

o disable DEP and execute shellcode

Part 111

Secure Development

Security from the ground up (5

e Use the right language and platform

o Java and Python eliminate buffer overflows
o PHP encourages insecure programming

o C++ is a bad choice in almost any case

Designing secure software

e Jsolate components along trust
boundaries

o authenticated / non-authenticated
o root / non-privileged user
o user data / trusted data

e Narrow, well defined interfaces

e Validate all data that crosses a trust
boundary

e Some things are just really bad ideas

o ActiveX
o Google Desktop Search web integration
o PHP register_globals setting

e Adding security on top of an existing
Insecure system

o Windows and Oracle legacy codebases
o WordPress vs. MediaWiki

Exploit mitigation

e All software has bugs

e Assume that all software you write will
ship with critical security vulnerabilities

e Make exploitation harder

o /GS cookies and ASLR are great examples
o SSH privilege separation

o Avoid single sign-on for web services

Microsoft vs. RedHat vs. Apple : e

vista | P | 2000 | RHEL | OPeN

SP2 BsD | O°X

ASLR
Executable Randomization

Library Randomization

Stack Randomization

Heap Randomization

Stack Protection
Stack Cookies
Variable Reordering

Non-executable

Heap Protection

Heap Metadata Protection

Non-executable

il determina-

Questions?

alex@sotirov.net

