
Reverse Engineering and
Computer Security

Alexander Sotirov
alex@sotirov.net



Introduction

• Security researcher at Determina, working on our LiveShield 
product

• Responsible for vulnerability analysis and reverse 
engineering Microsoft patches

• Exploit development experience

• Speaker at CanSecWest, REcon, SyScan (Singapore) and 
BlackHat USA 2006



Overview

In the next hour, we will cover:

• Introduction to reverse engineering
○ computer underground
○ security industry

• Reverse engineering Microsoft patches
○ patch statistics
○ silently patched vulnerabilities
○ reverse engineering tools
○ patch analysis demo

• Developing third party security patches
○ recent developments
○ implementation details



Part I

Introduction to Reverse Engineering



Historical Perspective

• Widely used in the computer industry
○ IBM PC clones
○ Sony vs. Accolade
○ Linux wireless drivers, Samba, IM clients

• Adopted by software crackers, virus writers and exploit 
developers with the rise of personal computers in the 1980s

• Invaluable in the AV and security industries



Reverse Engineering in the 
Computer Underground

• Cracking software copy protection
○ PC software and games
○ modding the Xbox and Playstation

• Exploit development
○ hackers, botnets, spyware

• Reversing undocumented DOS and Windows API
○ virus writers
○ spyware, keyloggers, malware



Reverse Engineering in the 
Security Industry

• Virus and malware analysis
○ AV and Anti-Spyware companies

• Patch analysis, vulnerability analysis
○ IDS, IPS companies

• Binary code auditing
○ discovering new vulnerabilities

• Exploit development
○ penetration testing

• Interoperability and undocumented APIs
○ kernel drivers for firewalls, HIPS, other low level software



Recent Developments

• Increased demand in the security industry

• Reverse engineering tools have matured

• New tools designed by people in the security community
○ BinDiff by SABRE Security
○ Free IDA plugins by researchers at iDefense, TippingPoint, 

Determina and others

• More complicated exploitation techniques (heap overflows, 
uninitialized variables) require the use of reverse engineering

• Closed-source applications on Windows systems are the 
primary target of attacks



Part I

Reverse Engineering Microsoft Patches



Patch Statistics

• More than 400 security bulletins since 1998

• Most updates often address multiple vulnerabilities
○ 9 vulnerabilities in the latest IE patch 

• Microsoft's definition of vulnerability: As long as the problems 
are in the same DLL file, it's a single vulnerability

○ 30 different integer overflows in the WMF parser were fixed by 
MS05-053 as a single vulnerability

• The technical information in the security bulletins is so 
minimal, it's practically useless:

There is a privilege elevation vulnerability in Windows 2000
caused by improper validation of system inputs. This
vulnerability could allow a logged on user to take complete
control of the system.



Skeletons in Microsoft's Closet

• Security issues are often fixed silently
○ security researcher reports a vulnerability
○ Microsoft audits the affected code and discovers 5 related bugs 
○ 6 bugs are fixed in the patch
○ security bulletin describes only the first bug

• Service packs always fix security issues, with no public 
announcements

• The users and the security community are left in the dark 
about the what the real issues are



Withholding information leads to…

Tuesday, July 12, 2006

○ MS06-035 describes a remotely exploitable vulnerability in the 
Mailslot network interface

○ no additional details in the security bulletin
○ CORE Security develops an exploit which crashed the kernel 

by sending a Mailslot request
○ exploit released to their customers on the same day

Wednesday, July 13, 2006

○ turns out the exploit crashes fully patched systems
○ CORE Security had discovered and exploited a new unpatched 

bug, not the one fixed in MS05-035 (Ooops!)

Microsoft patch expected in November.



Patch Analysis

• Everybody in IDS and IPS industry does it

• You have to understand the bugs to be able to detect attacks 
or protect against them

• People are interested in:

○ attack vectors and packet signatures - for network based IDS 
and IPS systems

○ the type of vulnerability (stack overflow, heap overflow, non-
memory corruption) - for host based IPS systems

○ remote detection of the vulnerability - for vulnerability 
assessment

○ exploit development - for testing IDS and IPS systems, and 
penetration testing (CORE IMPACT, Canvas, Metasploit)



My Patch Tuesday
Go to bed early the day before

10am
○ Patches are released between 10-11am
○ Start downloading patches, read the security bulletins in the 

meantime

11am
○ Prioritize the patches based on the available information (at this 

point it's just guessing)
○ Use IDA Pro to disassemble the patches and BinDiff to 

compare them against the unpatched files
○ update the priorities as we learn more

        ...

1am
○ Go home, rest, repeat the next day

Week



Reverse Engineering Tools

• IDA Pro
○ its plugin API is turning IDA into a reverse engineering platform 

that other tools depend on

• BinDiff
○ invaluable for binary patch analysis

• WinDbg
○ good support for debugging symbols, command line interface, 

frequent updates

• SoftICE
○ great for debugging code between userspace and the kernel

• VMWare
○ Workstation 5 supports multiple snapshots
○ GSX and Server provide a scripting API
○ Workstation 5.5 can be controlled with a command line tool



Binary Database

We have an internal database of binaries indexed by the name 
and SHA1 hash of the file. We store the following file metadata:

• name ntdll.dll

• size 654336 bytes

• modification date May 01, 2003, 3:56:12 PM

• SHA1 hash 9c3102ea1d30c8533dbf5d9da2a47…

• debugging symbols Sym/ntdll.pdb/3E7B64D65/ntdll.pdb

• source of the file
○ product Windows XP
○ version SP1
○ security update MS03-007
○ build qfe
○ comment



Binary Database

Current size of our database, including all service packs and 
security updates for Windows 2000, XP and 2003:

• 30GB of files

• 7GB of symbols

• 7500 different file names

• 28800 files total

and growing…



Binary Database



Any Vendors Reading This?

This is my advice to vendors who want to help security 
researchers:

• provide an accurate list of all security updates, hotfixes and 
other patches (preferably in XML format)

• make older releases of your software available

• don't combine security patches with other updates

• have a consistent naming and versioning system

• do not update software without updating its version or build 
number

• provide debugging symbols for all binaries

• release detailed descriptions of all vulnerabilities

Microsoft does almost all of the above, except for the last item.



BinDiff Demo

MS06-033

ASP.NET Information Disclosure



Part II

Third Party Security Patches



A Recent Development

Dec 2005

• WMF patch by Ilfak Guilfanov, author of IDA Pro

Mar 2006

• IE createTextRange patch by eEye

• IE createTextRange patch by Determina



WMF Vulnerability

The vulnerability was already actively exploited and used for 
malware distribution when it was first made public on Dec 27. It 
took Microsoft 10 days to release a patch.

Ilfak Guilfanov released an unofficial patch on Dec 31.

• injected into all processes with the AppInit_DLLs registry key

• patches an exported function in GDI32.DLL

• aborts the processing of WMF records containing executable 
code



IE createTextRange Vulnerability

Privately reported to Microsoft in February, publicly disclosed on 
Mar 22. Microsoft did not release patch until Apr 11. Two third-
party patches were released independently of each other on Mar 
27 by eEye and Determina.

eEye:

• creates a copy of JSCRIPT.DLL and patches it on disk

• uses pattern matching to find the code to patch

• modifies the registry to force IE to use of the patched file

Determina:

• patches MSHTML.DLL in memory

• hardcoded patch points for 98 different versions of MSHTML

• on most versions, modifies a single byte in the vulnerable 
function



Why Use Third-Party Patches?

Advantages:

• Availability before the official patch

• Vulnerability based, not exploit-dependent

• Not vulnerable to evasion, unlike network based IPS

Disadvantages:

• Limited patch QA process

• Limited support for multiple OS versions and languages

• Some vulnerabilities require extensive changes or redesign 
of the affected application and cannot be hotpatched

Third-party patches are ideal for situations where the risk of a 
system compromise outweighs the risk of interoperability issues.



Part III

Implementing Hotpatching



What Is Hotpatching?

Hotpatching is a method for modifying the behavior of an 
application by modifying its binary code at runtime. It is a 
common technique with many uses:

• debugging (software breakpoints)

• runtime instrumentation

• hooking Windows API functions

• modifying the execution or adding new functionality to 
closed-source applications

• deploying software updates without rebooting

• fixing security vulnerabilities



In-Place Code Modification

Modifying the instructions of the program by overwriting allows 
us to remove and change the instructions of a program:

• removing code
overwrite the instructions with NOPs

• changing code
overwrite an instruction with another instruction of the 
same or smaller size

call check_license call check_license
jnz valid jz valid

• adding code
not possible



5-Byte JMP Overwrite

The most common approach to hooking functions on Windows is 
to overwrite the function prologue with a 5-byte JMP instruction 
that transfers the execution to our code.

Original code:

55 push ebp

8B EC mov ebp, esp

53 push ebx

56 push esi

8B 75 08 mov esi, [ebp+arg_0]

Patched code:

E9 6F 02 00 00 jmp hook

8B 75 08 mov esi, [ebp+arg_0]



5-Byte JMP Overwrite

Before overwriting the function prologue, we need to save the 
overwritten instructions. The hook routine should execute the 
saved instructions before returning to the patched function.

Patched function: Hook routine:

jmp hook // do some work

mov esi, [ebp+arg_0] ...

... // saved instructions

ret push ebp

mov ebp, esp

push ebx

push esi

// return

jmp patched_function



Microsoft Hotpatching

The Microsoft hotpatching implementation is described in US 
patent application 20040107416. It is currently supported only on 
Windows 2003 SP1, but we'll probably see more of it in Vista.

The hotpatches are generated by an automated tool that 
compares the original and patched binaries. The functions that 
have changed are included in a file with a .hp.dll extension. 
When the hotpatch DLL is loaded in a running process, the first 
instruction of the vulnerable function is replaced with a jump to 
the hotpatch.

The /hotpatch compiler option ensures that the first instruction of 
every function is a mov edi, edi instruction that can be safely 
overwritten by the hotpatch. Older versions of Windows are not 
compiled with this option and cannot be hotpatched.



Conclusion

• Reverse engineering can be used for both good and bad:
○ find vulnerabilities
○ analyse patches
○ write exploits and malware
○ develop security patches

• If the bad guys are using it, we have to use it too to protect 
ourselves.



Questions?

alex@sotirov.net


