
Hotpatching and the Rise of
Third-Party Patches

Alexander Sotirov
alex@sotirov.net



Overview

In the next one hour, we will cover:

• Third-party security patches
○ recent developments (late 2005 and 2006)
○ why use third-party patches?
○ the issue of trust

• Implementing hotpatching
○ designing a hotpatching system
○ code modification
○ Microsoft hotpatching in Windows 2003
○ dynamic binary translation

• Vulnerability analysis and hotpatch development
○ debugging techniques for vulnerability analysis
○ building a hotpatch from scratch in 15 minutes (demo)



What Is Hotpatching?

Hotpatching is a method for modifying the behavior of an 
application by modifying its binary code at runtime. It is a 
common technique with many uses:

• debugging (software breakpoints)

• runtime instrumentation

• hooking Windows API functions

• modifying the execution or adding new functionality to 
closed-source applications

• deploying software updates without rebooting

• fixing security vulnerabilities



Part I

Third-Party Security Patches



A Recent Development

Dec 2005

• WMF patch by Ilfak Guilfanov, author of IDA Pro

Mar 2006

• IE createTextRange patch by eEye

• IE createTextRange patch by Determina



WMF Vulnerability

The vulnerability was already actively exploited and used for 
malware distribution when it was first made public on Dec 27. It 
took Microsoft 10 days to release a patch.

Ilfak Guilfanov released an unofficial patch on Dec 31.

• injected into all processes with the AppInit_DLLs registry key

• patches an exported function in GDI32.DLL

• aborts the processing of WMF records containing executable 
code



IE createTextRange Vulnerability

Privately reported to Microsoft in February, publicly disclosed on 
Mar 22. Microsoft did not release patch until Apr 11. Two third-
party patches were released independently of each other on Mar 
27 by eEye and Determina.

eEye:

• creates a copy of JSCRIPT.DLL and patches it on disk

• uses pattern matching to find the code to patch

• modifies the registry to force IE to use of the patched file

Determina:

• patches MSHTML.DLL in memory

• hardcoded patch points for 98 different versions of MSHTML

• on most versions, modifies a single byte in the vulnerable 
function



Why Use Third-Party Patches?

Advantages:

• Availability before the official patch

• Vulnerability based, not exploit-dependent

• Not vulnerable to evasion, unlike network based IPS

Disadvantages:

• Limited patch QA process

• Limited support for multiple OS versions and languages

• Some vulnerabilities require extensive changes or redesign 
of the affected application and cannot be hotpatched

Third-party patches are ideal for situations where the risk of a 
system compromise outweighs the risk of interoperability issues.



The Issue of Trust

Third-party patches have the following advantages compared to 
most commercial software:

• Third-party patches are small and self-contained

• Source code is available for review



Part II

Implementing Hotpatching



Before we begin…

Old-School DOS Viruses



Designing a Hotpatching System

• Injecting into the process
○ AppInit_DLLs registry key
○ kernel injection

• Intercepting module loading
○ hooking the loader
○ loading the DLL into every 

process

• Module matching
○ name
○ checksum
○ DLL version

• Locating the patch points
○ hardcoded addresses
○ exported functions
○ pattern matching

• Code modification
○ function table hooking
○ in-place code modification
○ 5-byte JMP overwrite



Locating the Patch Points

• hardcoded addresses
○ requires a database of all versions of the DLL
○ cannot patch new DLL versions
○ most reliable and easy to QA

• exported functions
○ relies on a well-defined function lookup method
○ limited to patching high-level functions
○ the APIs rarely change, so this method is reliable
○ cannot patch the middle of a function

• pattern matching
○ can patch anything
○ as long as you can find a good static pattern for it
○ not very reliable, you could patch the wrong place



Function Table Hooking

Replacing a function pointer in a table is one of the simplest 
ways to modify the behavior of a program. This method was 
commonly used by DOS viruses and memory resident programs 
to hook system functions by replacing interrupt handlers.

The most common targets for hooking on Windows are the IAT 
table in userspace and the system call table in the kernel.

• Function hooks can be chained

• Hooking on the API level is usually version independent

• Since we're not modifying any code, it is safer than the 
other approaches

• We can hook only exported functions or system calls

• Modifying the code inside a function is impossible



In-Place Code Modification

Modifying the instructions of the program by overwriting allows 
us to remove and change the instructions of a program:

• removing code
overwrite the instructions with NOPs

• changing code
overwrite an instruction with another instruction of the 
same or smaller size

call check_license call check_license
jnz valid jz valid

• adding code
not possible



5-Byte JMP Overwrite

The most common approach to hooking functions on Windows is 
to overwrite the function prologue with a 5-byte JMP instruction 
that transfers the execution to our code.

Original code:

55 push ebp

8B EC mov ebp, esp

53 push ebx

56 push esi

8B 75 08 mov esi, [ebp+arg_0]

Patched code:

E9 6F 02 00 00 jmp hook

8B 75 08 mov esi, [ebp+arg_0]



5-Byte JMP Overwrite

Before overwriting the function prologue, we need to save the 
overwritten instructions. The hook routine should execute the 
saved instructions before returning to the patched function.

Patched function: Hook routine:

jmp hook // do some work

mov esi, [ebp+arg_0] ...

... // saved instructions

ret push ebp

mov ebp, esp

push ebx

push esi

// return

jmp patched_function



5-Byte JMP Overwrite

Using the 5-Byte JMP overwrite technique, we can patch 
arbitrary locations with the following restrictions:

• No reads or writes to the 5 overwritten bytes

• No jumps or calls targeting the overwritten bytes

• No CALL instructions in the overwritten area, except at the 
end. If we insert our hook while the code is in the callee, it 
will return in the middle of the overwritten area.

• No INT instructions in the overwritten area, for the same 
reason as above

In most cases, static analysis with IDA is sufficient to determine 
if a location is suitable for hotpatching.



Microsoft Hotpatching

The Microsoft hotpatching implementation is described in US 
patent application 20040107416. It is currently supported only on 
Windows 2003 SP1, but we'll probably see more of it in Vista.

The hotpatches are generated by an automated tool that 
compares the original and patched binaries. The functions that 
have changed are included in a file with a .hp.dll extension. 
When the hotpatch DLL is loaded in a running process, the first 
instruction of the vulnerable function is replaced with a jump to 
the hotpatch.

The /hotpatch compiler option ensures that the first instruction of 
every function is a mov edi, edi instruction that can be safely 
overwritten by the hotpatch. Older versions of Windows are not 
compiled with this option and cannot be hotpatched.



Dynamic Binary Translation

A common problem for all of the code modification approaches 
described earlier is the inability to patch completely arbitrary 
locations. This can be solved by using a dynamic binary 
translation engine.

One such engine is the DynamoRIO project from MIT. Its basic 
model of operation is given below:

• disassemble the current basic block

• copy the instructions into a code cache

• add instrumentation and hotpatches

• execute the basic block from the code cache

This allows us to add, remove and modify arbitrary code in the 
program.



Part III

Vulnerability Analysis and Patch 
Development



Overview

Developing a hotpatch for a security vulnerability is generally a 
four step process:

• Run an exploit or trigger a crash

• Use a debugger to locate the vulnerable code

• Reverse engineer the vulnerable code

• Write the hotpatch

These steps are very similar to the process of exploit 
development.



Stack Overflows

• Modify the exploit and overwrite the return address with an 
invalid address, causing an exception after the jump to the 
shellcode. Another option is to turn on DEP.

• Overwrite the stack with the minimum amount of data to 
cause a crash and avoid corrupting the stack frame of the 
previous function.

• Put a breakpoint in the parent function and trace it until we 
find the function where the overflow happens.



Heap Overflows

• Run the application in WinDbg with the debugging heap 
enabled to spot heap corruption early on.

• If the exploit overwrites a fixed location, put a hardware 
breakpoint on it and see which function writes to it.

• Use conditional breakpoints in WinDbg to display all heap 
allocations and frees in a suspicious area:

bu ntdll!RtlFreeHeap ".printf \"\\nfree(%x, %x)\\n\", 
poi(esp+4), poi(esp+c); k 6; g"

bu ntdll!RtlAllocateHeap+113 ".printf \"\\nalloc(%x, %d) = 
%x\\n\", poi(esp+4), poi(esp+c), eax; k 6; g"



Uninitialized Variables

• If the uninitialized variable is on the stack, find out which 
stack frame it is in.

• Disassemble the function that created it and look for code 
that reads or writes to that variable.

• Send a non-exploit request and find the code that initializes 
the variable. Find out why it was not executed during the 
exploit request.

• If the variable is on the heap, you have to find who allocated 
that memory block and what it's used for.



Non-Memory Corruption 
Vulnerabilities

• Very hard to debug

• Runtime tracing is probably the best option
○ Process Stalker
○ BinNavi

• Wait for the official patch :-)



Demo

Building a Hotpatch From Scratch
in 15 Minutes



Questions?

alex@sotirov.net


